
Copley Controls CAN-PCI-02

Software interface

Overview:

The CAN-PCI-02 product is a PCI based Control Area Network interface card. This card allow
software running on a PC style computer to access devices connected to it through the CAN network.

The hardware of the CAN card is accessed through the use of a device driver running on the host
operating system. It's Copley's intention to support a wide variety of different operating systems with
this card. At the time of this writing (Spring 07) there are drivers available for: Windows NT 4.0,
Windows 2k - Vista, Linux 2.4 and 2.6 kernels, and QNX real time OS. Other drivers are likely to be
available in the future.

This document describes the interface between the host software and the device driver. Copley has
taken pains to keep this interface as simple as possible and to keep it consistent from one OS to
another. In particular, the use of DLL (Dynamic Link Libraries) has been avoided in favor of a more
direct connection to the device driver. This simplifies software installation as it reduces the number of
additional files that need to be installed.

A simple set of functions written in both C and C++ programming languages is available on the Copley
web site which manage the interface to the CAN driver. These functions handle all the low level
details of opening a connection to the driver, configuring the port, reading and writing CAN messages
and closing the port. No knowledge of the following low level details of how these functions work is
required in order to use them.

Connecting to the card:

Before any communication can be made to the PCI card, a handle to the device driver must be
obtained. This is generally done through the use of the same OS support functions that would be used
to open a file in the file system.

To open a handle to the driver, it's first necessary to know the name assigned to the device driver by the
operating system. Since the PCI card contains two separate CAN ports, there are actually two names
associated with each card; one for the first port, and one for the second port. By convention, the first
port is the one closest to the PCI connector on the PCI card.

Under windows, the name used to open a handle to the device driver has the following form:

\\.\copleycan<card>\<port>
In this name, the <card> should be substituted with a two digit card number, and the <port> should
be substituted with a single digit port number. Both the card and port numbers count from zero.

For example, on a PC with two CAN cards installed, the following four port names are available:

\\.\copleycan00\0
\\.\copleycan00\1
\\.\copleycan01\0
\\.\copleycan01\1

Under Linux and most other Unix based operating systems, the device files reside in the /dev sub-
directory and are given names of the form /dev/copleycan<port> where <port> is the zero

based port number. Each card creates two ports starting with port zero.

Once the name of the driver file is known, the low level OS function used to open a file may be used to
create a handle to the driver. In windows, this function is called CreateFile. In Linux / Unix this
function is called simply open.

Example C code for opening a handle to the driver under Windows:

HANDLE hndl;
hndl = CreateFile("\\\\.\\copleycan00\\0",
 GENERIC_READ|GENERIC_WRITE,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED,
 NULL);
if(hndl == INVALID_HANDLE_VALUE)
{
 // handle open failure
}

Note that in the windows example above, the backslash characters in the file name were doubled. This
is required in C code because the backslash character has special meaning in strings. The resulting file
name is as described above.

Example C code for opening the device under Linux:

int hndl;
hndl = open("/dev/copleycan00", O_RDWR);
if(hndl < 0)
{
 // handle open failure
}

Sending commands:

Once a handle to the driver has been opened, it is possible to send commands to the driver. These
commands are used to configure the card and read status information from it.

All commands to the driver are packaged as an array of one or more 32-bit integer values. All
commands return an array of one or more 32-bit integer values as a response. The actual number of
words of data sent to or from a particular command is defined as part of the command description.

The first word of data sent as part of a command is required for all command types. This word is
formatted as follows:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Reserved Command code Reserved Data words

Bits 16-23 give the command code that defines the type of command being sent. Bits 0-5 give the
number of additional 32-bit words that are passed with the command. All other bits of this word are
reserved and should be set to zero.

All commands return one or more 32-bit words of data. The first word of data returned from a
command is formatted as follows:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Reserved Error code Reserved Data words

Bits 16-32 give an error code which indicates the success/failure of the command. A zero in this field
indicates success. Bits 0-5 give the number of additional 32-bit words of data returned by the
command. All other bits are reserved and should be ignored.

Commands are sent to the driver using the I/O control system function. In windows, this function is
called DeviceIoControl. The use of this function is somewhat complex and beyond the scope of
this document. Interested readers should refer to the documentation provided by Microsoft on the
Microsoft developers network web site.

A list of all command and error codes can be found at the end of this document.

Receiving a CAN message:

Receiving a CAN message from the CAN card driver is also handled through the I/O control system
call. The structure passed to this system call is defined as follows:

typedef struct
{
 int32_t timeout; // Reserved for use by driver
 uint32_t timestamp; // Timestamp (microseconds)
 uint32_t id; // CAN message ID
 uint32_t flags; // Various flags
 uint8_t data[8]; // CAN message data
} CANCARD_MSG;

The first member of this structure gives a timeout value in milliseconds. The I/O control function will
return as soon as a CAN message has been received, or this timeout expires. If the timeout is set to
zero, then the CAN driver will return immediately if no data is available. If the timeout is set to a
negative number, then the driver will wait for a CAN message with no timeout.

If a CAN message is successfully received by the driver before the timeout expires, then the message
structure will be filled in. The flags member is a bit-mapped value which gives some additional
information about the CAN message received. The following bits are defined:

31-7 6 5 4 3 2 1 0

Reserved Extended Notify RTR Length

Length gives the number of bytes of CAN data passed with the message. It's legal range is zero to
eight.

RTR will be set for remote request messages. It is clear for standard data messages.

Notify will be set if the CAN port is configured to echo transmitted messages back to itself. This is
mostly useful for CAN bus monitoring and is disabled by default.

Extended is set if this CAN message uses a 29 bit extended CAN ID. If set, then the CAN ID value
occupies bits 0-28 of the ID field. If clear, then the CAN ID is a standard 11-bit value and occupies
bits 0-10 of the ID field.

Sending CAN messages:

CAN messages are also sent through the use of an I/O control function. The structure that is used to
pass the CAN message information to the driver is exactly the same as the structure used to receive
CAN messages.

List of command codes:

The following command codes may be passed to the driver.

Code Data to
driver

Data from
driver

Description

1 0 0 Open the CAN port

2 0 0 Close the CAN port

3 1 0 Set bit rate. The passed word of data gives an identifier in the
it's lower 8 bits. This identifier defines the bit rate to select.
The following bit-rates are supported:

1 1,000,000 bits/sec
2 800,000 bits/sec
3 500,000 bits/sec
4 250,000 bits/sec
5 125,000 bits/sec
6 100,000 bits/sec
7 50,000 bits/sec
8 20,000 bits/sec

4 0 2 Get bit rate.
The bit rate code is returned in the lower 8 bits of the first word
of data returned. The other data returned should be ignored.

9 2 0 Set a parameter. The first passed word of data gives the
parameter number, the second word gives the value. See the
list of parameters below

10 1 1 Read a parameter. The passed word of data gives the parameter
number. The returned data gives the parameter value.

249 1 0 Set the receive buffer interrupt threshold. This defines how
many CAN messages must be stored in the cards on-board
receive buffer before the host is interrupted. This should
normally be left at the default value of zero.

252 1 0 If the passed parameter is non-zero, then all transmitted CAN
messages will be fed back to the receive buffer with valid time
stamps. If the passed parameter is zero, then this feature will
be disabled (default).

255 0 0 Reset the CAN card.

List of CAN error codes:

Code Description

0 No error

1 Unknown command passed

2 Illegal parameter passed

3 CAN port is already open

4 CAN port is not open

5 Command already in progress.

6 Internal device failure

7 Timeout waiting on command.

8 Signal received by driver

9 Not enough data passed with command

10 Command mutex held (driver error)

11 Invalid queue head/tail pointer

12 Failed to erase program/data flash memory

13 Attempt to write firmware before erasing flash

14 Too much data sent

15 Unknown I/O control code passed

16 Command passed without required header

17 Too much command data passed

18 Command already in progress on card

19 More then 8 bytes of data sent with CAN message

20 Transmit queue is full

21 Receive queue is full

22 Parameter is read only

23 Memory read/write test failure

24 Memory allocation failure

25 Reserved for use internal to driver

26 Generic driver error code

List of CAN card parameters:

There are several parameters which can be accessed to get information about the CAN card.

Parameter
ID

Name Description

0 Serial number Card serial number

1 Manufacturing
information

Reserved for use by Copley Controls.

2 PCI bus voltage Voltage of PCI bus scaled by 64k/5V.

3 3.3V supply Voltage of the on-board 3.3V supply scaled by 32k/5V.

4 2.5V supply Voltage of the on-board 2.5V supply scaled by 32k/5V.

5 CAN port status Bits Meaning
0-7 Transmit error count
8-15 Receive error count
16 Set if port is open
17 Set if port is synchronized to bus
18-19 Transmit status (normal, warning, error, bus-off)
20-21 Receive status (normal, warning, error, bus-off)
22-31 Reserved.

10 Interrupt inhibit
timer

Gives the maximum time in microseconds to delay a receive
interrupt in the receive interrupt threshold has not been met.

	Copley Controls CAN-PCI-02
	Software interface
	Overview:
	Connecting to the card:
	Receiving a CAN message:
	Sending CAN messages:
	List of command codes:
	List of CAN error codes:
	List of CAN card parameters:

